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We consider the heating of carriers in an intrinsic graphene in a strong dc electric field. The intraband energy
relaxation due to acoustic phonon scattering and the interband generation-recombination transitions due to
thermal radiation are taken into account. The distributions of nonequilibrium carriers are obtained for the cases
when the carrier-carrier scattering is unessential and when the intercarrier Coulomb scattering effectively
establishes the quasiequilibrium distribution with the temperature and the density of carriers determined by the
balance equations. Due to an interplay between weak energy relaxation and generation-recombination pro-
cesses, the nonlinear response is characterized by a very low threshold electric field. The nonlinear current-
voltage characteristics as well as the field-dependent carrier concentration are calculated for the case of the
momentum relaxation associated with the elastic scattering. The obtained current-voltage characteristics ex-
hibit a low threshold of nonlinearity and an appearance of the second ohmic region, for strong fields.

DOI: 10.1103/PhysRevB.79.165432 PACS number�s�: 73.50.Fq, 81.05.Uw

I. INTRODUCTION

Active studies of graphene in recent years are stimulated
by unusual physical properties of this gapless and massless
semiconductor �see discussion and references in the review1�
as well as the prospects its applications in electronics �see,
for instance, Refs. 1 and 2, and the references therein�. For
different device applications of graphene, the in-depth under-
standing of its optical and electrical properties, particularly,
far from equilibrium, is indispensable. Both experimental
and theoretical studies of the nonequilibrium carriers in
graphene under interband photoexcitation have been already
performed �see Ref. 3 and Refs. 4 and 5, respectively, and
references therein�. Experimental investigations of the carrier
heating in graphene by a dc electric field were carried out in
relation with demonstrations of a graphene field-effect
transistor.6 Essential heating apparently had occurred in the
experiments on current-induced cleaning of graphene.7 The
theoretical treatments of the rate of energy relaxation of non-
equilibrium carries were performed both analytically8 and
numerically.9 The kinetic equation for carriers in graphene in
a strong electric field was recently derived and discussed.10

Nevertheless, the basic problem of the carrier heating in
graphene by a dc electric field has not been considered in a
systematic way and the graphene current-voltage character-
istics were not analyzed yet.

In this paper, we study a heating of carriers in an intrinsic
graphene under the effect of a dc electric field. To describe
these phenomena, we take into account both an increase in
the energy of carries in the electric field, E, and the follow-
ing relaxation processes: �1� the relaxation of the carrier mo-
mentum due to elastic scattering on the structural disorder
�this is the most fast process ensuring weak anisotropy of the
carrier distribution function11�, �2� the intraband quasielastic

energy relaxation on acoustic phonons, �3� the generation-
recombination processes due to interband transitions induced
by thermal radiation, and �4� the intercarrier scattering due to
the Coulomb interaction. In the present study, we consider
the carrier heating within the following two limiting regimes:
�i� the regime when the Coulomb interaction is unessential,
so that it is possible to neglect the intercarrier scattering, and
�ii� the Coulomb-controlled regime. In the latter case, the
Coulomb scattering provides the quasiequilibrium distribu-
tion of carries, with the distribution characteristics described
by the equations of the concentration balance and the energy
balance. We find the distribution functions of carries for
these regimes and investigate their dependences on the ap-
plied electric field and on the temperature of thermostat
formed by phonons and thermal radiation. In addition, we
analyze the concentration of the nonequilibrium carriers and
the current-voltage characteristics.

The character of the obtained nonlinear response is deter-
mined by the following features of the model under consid-
eration. First, the carrier velocity, vWp / p, does not increase
with the energy, where vW=108 cm /s is the characteristic
velocity of charged neutrinolike particles, and p is the two-
dimensional �2D� momentum. Second, the interband transi-
tions are effectively excited by thermal radiation �the matrix
element of transition is �vW� and they not only affect the
carrier concentration but also substantially contribute to the
carrier energy relaxation. As a result, the nonequilibrium dis-
tributions are formed due to the interplay between a weak-
energy relaxation and generation-recombination processes
�i.e., due to the interplay between the interactions of carriers
with phonon and photon thermostats�. Third, although the
interaction of carriers with small momentum p with phonons
is weak, the rate of energy relaxation sharply rises with the
momentum increase. Therefore, for scattering on short-range
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defects, when the relaxation of momentum grows with the
energy, it is realized a sublinear current-voltage characteristic
with essential nonlinearity for weak fields. If the momentum
relaxation becomes ineffective for high-energy carriers �be-
cause of a finite-range disorder� a superlinear increase in
current takes place. In the region of strong fields a linear
current-voltage characteristic is realized �the second ohmic
region� where the effective conductivity is smaller than the
conductivity of equilibrium carriers for low temperatures, T.

The paper is organized in the following way. The basic
equations governing the processes of the heating of carriers
in an intrinsic graphene under a dc electric field are presented
in Sec. II. In Sec. III, we consider the symmetric parts of the
distribution functions of nonequilibrium carriers for cases �i�
and �ii� and we calculate the carrier concentration as function
of field. The current-voltage characteristics are analyzed in
Sec. IV. The concluding remarks and discussion of the as-
sumptions used are given in Sec. V. In the Appendix, the
general equation for the density matrix is reduced to the qua-
siclassic kinetic equation for the carrier distribution function
in a dc electric field used in the paper.

II. BASIC EQUATIONS

Nonequilibrium carriers, electrons, and holes in the intrin-
sic graphene are described by coinciding distribution func-
tions fe,p= fhp� fp as their energy spectra are symmetric and
the scattering mechanisms are identical �see the Appendix�.
Therefore, instead of system of the kinetic equations for fep
and fhp, one can consider the following kinetic equation:

eE ·
� fp

�p
= �

j

Jj�f �p� . �1�

Here, E is the electric field and Jj�f �p� is the collision inte-
gral for the jth scattering mechanism, with the indices j=D,
LA, R, and C corresponding to the static disorder �D�, the
acoustic phonon scattering �LA�, the radiative-induced inter-
band transitions �R�, and the carrier-carrier scattering �C�,
respectively. The collision integral for the elastic scattering
was considered previously11,12 �see also the references
therein�, JLA�f �p� and JR�f �p� were evaluated in Ref. 5, and
the Coulomb scattering integral was considered in Ref. 13.
For the distribution function obeying Eq. �1�, the equation
governing the concentration balance can be presented as

4

L2�
p

JR�f �p� = 0. �2�

Equation �2� accounts for the fact that the interband transi-
tions are forbidden not only for elastic scattering but also for
Coulomb scattering, due to symmetry of the energy
spectrum,14 and for the phonon scattering, due to the condi-
tion s�vW. Here s is the velocity of sound. The factor 4 in
Eq. �2� takes into account the spin and valley degeneracies,
and L2 is the normalization area.

Taking into account that electrons and holes equally con-
tribute to the current density, I, one obtains

I =
8evW

L2 �
p

p

p
�fp. �3�

Here, the asymmetric part of distribution function, �fp, is
separated from the symmetric one, fp, by using the relation
fp= fp+�fp. At �eE��p

�m�� p, where �p
�m� is the momentum

relaxation time, the asymmetric part is relatively small:15

��fp�� fp. As follows from Eq. �1�, �fp is given by

�fp =
�eE · p�

p
�p

�m��−
dfp

dp
	 . �4�

In the case of a random potential Ux characterized by the
correlation function 
UxUx���Ud

2 exp�−��x−x�� / lc
2� with
the averaged energy Ud and the correlation length lc, one
obtains11

1

�p
�m� =

vdp

�
�� plc

�
	, ��z� =

e−z2

z2 I1�z2� , �5�

where the characteristic velocity vd is introduced as vd

=�Ūd
2lc

2 /4�2vW. The form factor ��z�, which is expressed
via the modified Bessel function I1�x�, decreases with plc /�.
The conductivity of graphene, �, is determined by the stan-
dard formula I=�E. Using Eqs. �3�–�5� and performing the
averaging over angle, the expression for the conductivity can
be presented as

� =
e2

��

2vW

vd
�

0

	 dp

��plc/���−
dfp

dp
	 . �6�

Next, averaging Eq. �1� over the angle �below we sym-
bolize such an averaging by a line over the expression� and
neglecting the weak contribution of �fp to the right-hand
side of Eq. �1�, we reduce the kinetic equation for the sym-
metric part fp of the distribution function to the following
form:

eE ·
��fp

�p
= �

j

Jj�f �p� . �7�

Here Jj�f � p�=Jj�t �p� and summation is performed over
j=LA, R, and C because the elastic scattering does not affect
the symmetric distribution due to the energy conservation.
The left-hand side of Eq. �7�, which describes the effect of
the electric field, can be presented as follows:16

eE ·
��fp

�p
=

�eE�2

2p

d

dp
p�p

�m��−
dfp

dp
	 . �8�

As a result, using the Fokker-Planck form of JLA�f � p� and
JR�f � p� obtained in Ref. 5, we arrive at the following kinetic
equation:


p
�qe�

p2

d

dp
��p4 +

pE
4

2��plc/���dfp

dp
+

p4

pT
fp�1 − fp��

+ 
p
�R��N2p/pT

�1 − 2fp� − fp
2
 + JC�f �p� = 0, �9�

where Nx= �ex−1�−1 is the Planck distribution function and
pT=T /vW, with the equilibrium temperature T. The rate of
quasielastic energy relaxation 
p

�qe� and of the rate of radia-
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tive transitions 
p
�R� can be presented, respectively, in the

form5


p
�qe� = � s

vW
	2vacp

�
, vac =

D2T

4�2�svWs2 ,


p
�R� =

vrp

�
, vr =

e2��

�c
�vw

c
	28vW

3
. �10�

Here we have introduced the characteristic velocities vac and
vr expressed via the deformation potential D, the sheet den-
sity of graphene �s, and the dielectric permittivity �. The
characteristic momentum pE in Eq. �9� is defined as

pE
4 = �vW

s
	2 �eE��2

vacvd
�11�

so that pE��E. The Coulomb scattering integral JC�f � p� can
be neglected in Eq. �9� for case �i�. In this case, the nonequi-
librium distribution function fp is governed by a nonlinear
differential equation of the second order.

In case �ii�, the Coulomb scattering term in Eq. �9� is
dominant so that it provides the quasiequilibrium distribution
described by the following function:

f̃ p = �exp��vWp − 
�/Tc
 + 1�−1, �12�

with the effective temperature of carriers Tc and the qua-
sichemical potential 
. To determine Tc and 
, we can use
the concentration balance Eq. �2� and the energy balance
equation. The latter we derive by summing Eq. �7� over p
with the energy weight vWp as follows:

1

2
�E2 +

4vW

L2 �
p

p�JLA�f �p� + JR�f �p�
 = 0. �13�

The field term in Eq. �13� is expressed through conductivity
�6� using the integration by parts �the factor 1/2 is quite
understood as the total Joule heat �E2 is shared equally be-
tween electrons and holes�. Therefore, the parameters char-

acterizing f̃ p, i.e., Tc and 
, are governed by two transcen-
dent Eqs. �2� and �13�. After that, the nonlinear conductivity

can be calculated substituting f̃ p into Eq. �6�.

III. NONEQUILIBRIUM DISTRIBUTIONS

Below we consider the nonequilibrium distribution func-
tions obtained from Eq. �9� with the Coulomb contribution
omitted �case �i�
 or from the balance Eqs. �2� and �13�
�case �ii�
. Also we present the field and temperature depen-
dences of the nonequilibrium carrier concentration.

A. Weak intercarrier scattering

We start with consideration of case �i�, when the carrier-
carrier scattering is ineffective. Omitting JC in Eq. �9� and
introducing the dimensionless momentum x= p / pT and the
parameter �= pTlc /�, we obtain the nonlinear differential
equation as follows:

d

dx
��x4 +

�pE/pT�4

2��x�� �dfx

dx
+ x4fx�1 − fx�� + �x2�1 − 2fx

e2x − 1
− fx

2	
= 0. �14�

Here, the dimensionless parameter �= �vW /s�2vr /vac deter-
mines the relative contribution of the thermal radiation and
energy relaxation. As the boundary conditions for Eq. �14�
we use the following one: x4�dfx /dx+ fx�x→	=0, so that fx
must decrease at x→	 sufficiently fast15 and also the density
balance Eq. �2�. Integrating Eq. �14� over x from 0 to 	 in
order to write the balance equation, we obtain an additional
term proportional to �pE / pT�4�dfx /dx�x=0, which must be
equal to zero. As a result, we obtain �dfx /dx�x→0=0 and this
requirement can be used as the second boundary condition
for Eq. �14� �instead of Eq. �2�
.

The numerical solution of Eq. �14� was performed apply-
ing the finite difference method and the iterations over non-
linear contributions �see Ref. 17�. The distribution functions
calculated for different temperatures, electric fields, and lc
are presented in Figs. 1 and 2. In the range of low tempera-
tures, the distribution function exhibits two different types of
behavior with increasing electric field: in weak electric
fields, �pE / pT�4 / �4���1, and in strong electric fields,
�pE / pT�4 / �4���1.

As it is seen from Figs. 1�a� and 2, in weak electric fields
there is an essential suppression of the distribution function
in the range of small p� pT �as slow carriers are heated very
effectively�, while in the range of large p� pT, the distribu-
tion function remains almost equilibrium one. Further, Figs.
1 and 2 show also that as the electric field becomes strong,
the carriers are spread over a wide range of energies such
that, e.g., at T=4.2 K for E�5 V /cm, the tail of the distri-
bution will reach the energies for which the spontaneous
emission of the optical phonons begins ��90 meV�. It can
be seen as well that with an increase in T the transition

FIG. 1. �Color online� Determined from Eq. �14� distribution
functions, at T=4.2 K and lc=10 nm: �a� for weak electric fields
�1� E=0.1 mV /cm, �2� 1 mV/cm, �3� 10 mV/cm, and �4� 30 mV/
cm; �b� for strong electric fields E=0.1 V /cm �5�, 0.3 V/cm �6�, 1
V/cm �7�, and 5 V/cm �8�. Dotted curves correspond to the equilib-
rium distribution.
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between the weak-field and strong-field regimes occurs at a
higher electric field E�T2. Figures 2�a�–2�c� show the plots
of the distribution functions calculated for lc=10 nm and 20
nm and different E and T. It is seen that the effect of a finite
lc reinforces with increasing E so that the influence of the
electric field on the distribution function becomes more pro-
nounced at higher lc. However, at weak E the difference
between the solid and dashed curves is practically invisible.
Notice, from the solid and, especially, the dashed curves 4 in
Fig. 2�c� it follows that in the case in question the interaction
with optical phonons can be important.

B. Coulomb-controlled distribution

Further, we examine case �ii�, when quasiequilibrium dis-
tribution given by Eq. �12� is determined from the balance
equations, Eqs. �2� and �13�. Introducing the dimensionless

momentum, y=vWp /Tc, so that f̃ y = �exp�y−
 /Tc�+1
−1, we
rewrite the concentration balance Eq. �2� in the form

�
0

	

dyy2� 1 − 2 f̃ y

e2yTc/T − 1
− f̃ y

2	 = 0. �15�

Equation �15� yields the relation between 
 /T and dimen-
sionless temperature Tc /T �this relation is not dependent ex-
plicitly on the electric field�. Simultaneously, the energy bal-
ance Eq. �13� can be presented as

QE −
Tc − T

T
�

0

	

dyy4ey−
/Tc f̃ y
2 + ��

0

	

dyy3� 1 − 2 f̃ y

e2yTc/T − 1
− f̃ y

2	
= 0, �16�

where field contribution QE is transformed using Eq. �6�,

QE = � pE

Tc/vW
	4� f̃ y=0 +

�c

2
�

0

	

dy f̃y���cy�� . �17�

Here �c=Tclc /�vW and ��z�=−���z� /��z�2 with
��0�=1 /2.

In Figs. 3�a� and 3�b�, the dimensionless effective tem-
perature Tc /T and the maximal value of the distribution func-

tion f̃ p=0= �exp�−
 /Tc�+1
−1, which are calculated from
Eqs. �15� and �16�, are shown as functions of E for different
T. As seen from Fig. 3�a�, the dimensionless temperature
Tc /T rises faster with increasing electric field E for larger lc;
in addition, an increase in Tc /T becomes steepened at
smaller T. Figure 3�b� shows that the characteristic value,
fp=0, of distribution function decreases faster with increasing
E at smaller T.

C. Hot carrier concentration

Using the solutions of Eq. �14� or Eqs. �15�–�17�, below
we calculate the carrier concentration

n =
2

��2�
0

	

dppfp, �18�

where fp in the right-hand side of Eq. �18� should be re-

placed by f̃ p in case �ii�. As a result, the electric field depen-
dence of n is determined by a competition of an increase in
the effective temperature Tc and a decrease in the maximal

distribution f̃ p=0 �see Figs. 3�a� and 3�b�
. Hence, the carrier

FIG. 2. �Color online� The same as in Fig. 1 calculated: �a� for
�1� T=77 K and E=0.14 V /cm, �2� 1.4 V/cm, �3� 4.4 V/cm, and
�4� 14 V/cm; �b� for �1� T=150 K and E=74 mV /cm, �2� 0.74
V/cm, �3� 2.35 V/cm, and �4� 7.4 V/cm; �c� for �1� T=300 K and
E=1 V /cm, �2� 3 V/cm, �3� 10 V/cm, and �4� 30 V/cm. The solid
and the dashed curves correspond to lc=10 nm and 20 nm, respec-
tively. Dotted curves correspond to equilibrium distributions.

FIG. 3. �Color online� Determined from the balance Eqs. �15�
and �16� �a� dimensionless effective temperature Tc /T and �b� maxi-

mal distribution f̃ p=0 versus electric field for �1� T=20 K, �2� 77 K,
�3� 150 K, and �4� 300 K. Solid and dashed curves are correspon-
dent to lc=10 nm and 20 nm, respectively.
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concentration increases slowly when the electric field in-
creases.

Figure 4 shows the plot of the dimensionless carrier
concentration n /nT as a function of E. Here the equilibrium
concentration readily follows from Eq. �18� as
nT=��T /�vW�2 /6 �notice, at T=4.2, 20, 77, 150, and
300 K one obtains nT=1.6�107 cm−2, 3.6�108 cm−2,
5.4�109 cm−2, 2.0�1010 cm−2, and 8.1�1010 cm−2, re-
spectively
. From Fig. 4 one can see the following: �a� at low
temperatures �and not too large E�, the relative increase in
the density �n−nT� /nT is approximately proportional to E1/2

because due to a small characteristic momentum p̄, the effect
of a finite lc is negligible; �b� at higher temperatures �or very
large E�, �n−nT� /nT is a linear function of E, i.e.,
�n−nT� /nT�A+BE, because due to large p̄, the effect of a
finite lc becomes essential. Notice, that the carrier-
concentration increase becomes faster for larger lc.

IV. CURRENT-VOLTAGE CHARACTERISTICS

Using the nonequilibrium distribution functions obtained
in Sec. III, we calculate here the nonlinear conductivity
given by Eq. �6� and analyze the modifications of the
current-voltage characteristics due to variations in the tem-
perature and lc. Performing the integration in Eq. �6� by
parts, we arrive at

� = �0�2fp=0 +
lc

�
�

0

	

dpfp��plc/��� , �19�

where �0= �2vW /vd�e2 /�� is the characteristic conductivity.
For the case of short-range scattering �p̄lc /��1, where p̄ is
the characteristic momentum of hot carriers�, the conductiv-
ity can be expressed via the distribution function of low-
energy carriers as follows: ��2�0fp=0. Since fp=0=1 /2, in

the limit E→0 one obtains �=�0 in the case of short-range
scattering and in the absence of heating. In Fig. 5 we plot
� /�0 versus electric field E for lc=10 nm. Notice, in Figs.
5�a�–5�c�, except the inset in Fig. 5�a�, the same electric field
range is considered; it is different from that used in Figs. 5�d�
and 5�e�. It is seen that both approaches yield similar depen-
dences even for very strong fields for given T and lc. The
dependences � /�0 versus E for lc=20 nm are plotted in Fig.
6, where conductivity rises faster at elevated temperatures.

Figure 7 demonstrates the current-voltage characteristics,
i.e., the dependences of the current density I=�E on the
electric field E calculated for lc=10 nm at different tempera-
tures. Similar dependences for lc=20 nm are shown in Fig.
8. It is seen that in the range of low temperatures, the
current-voltage characteristics can be essentially nonlinear
even at relatively small E �corresponding to I�10−5 A /cm
in the low-temperature region�. Point out that for larger E
and I �E�1 V /cm at low temperatures and E�10 V /cm at
room temperature�, Figs. 7 and 8 present dependences that
are close to linear ones. In addition, Figs. 7 and 8 show that
in both cases, �i� and �ii�, the current-voltage characteristics
calculated for given T and lc are similar. One can also see
that current-voltage characteristics can exhibit both sublinear
and superlinear behavior in a wide range of the electric field
depending on the values of T and lc. The modification of the
current-voltage characteristic shape is attributed to the ef-
fects associated with finite values of lc.

V. CONCLUSIONS

To summarize, we developed the theory of the carries
heating in intrinsic graphene in a strong dc electric field for

FIG. 4. �Color online� Normalized carrier concentration, n /nT,
versus electric field: �a� at �1� T=4.2 K, �2� 20 K, �3� 77 K, and �b�
at �4� T=150 K, �5� 300 K. The solid and the dashed curves are
calculated from Eqs. �14� and �18� for lc=10 nm and 20 nm, re-
spectively. The dotted and the dot-dashed curves are calculated
from Eqs. �15�–�18� for lc=10 nm and 20 nm, respectively.

σ
σ

σ
σ

FIG. 5. �Color online� Dimensionless conductivity, � /�0, versus
field E for lc=10 nm at different temperatures: �a� T=4.2 K, �b� 20
K, �c� 77 K, �d� 150 K, and �e� 300 K. The solid and the dashed
curves are calculated from Eqs. �14� and �19�, and Eqs. �15�–�19�,
respectively. Inset in panel �a� shows low-field dependencies.
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the cases when intercarrier scattering is negligible or domi-
nant. It is found that the deviation from the equilibrium dis-
tribution starts from very low electric fields �from 0.3 V/cm
at the room temperature and from 10 
V /cm at the liquid-
helium temperature� due to ineffective energy relaxation of
low energy carriers. Since the energy relaxation sharply in-
tensifies with reinforcing heating and the carrier recombina-
tion rate exceeds their thermogeneration, in the short-range

scattering case the current-voltage characteristics can be-
come sublinear. However, in the case of scattering on finite-
range disorder, the current-voltage characteristics can dem-
onstrate the superlinear behavior. Therefore, an intrinsic
graphene can exhibit a unusual combination of the low
threshold of the electric field nonlinearity and appearance of
the second ohmic region in strong fields. The dependencies
obtained are totally different from the current-voltage char-
acteristics of the bulk gapless semiconductors considered a
few decades ago.18 These differences stem from the qualita-
tive differences of the density of states and the generation-
recombination mechanisms. So that in gapless semiconduc-
tors a low threshold is not realized while a behavior is
similar in the region of a strong field.

Let us discuss the main assumptions made. Here we stud-
ied an intrinsic graphene which has at most resistivity so the
effect of heating manifests itself the most. Doped materials
require a separate investigation, moreover nonlinearity in
these materials must be weaker. We have restricted ourselves
by the study of limiting cases when the intercarrier Coulomb
scattering is either weak or dominating. As shown, the elec-
tric field dependences of concentration and the current-
voltage characteristics calculated in these two limiting cases
are fairly similar, i.e., they exhibit a weak sensitivity to the
details of the distribution function. As the main generation-
recombination mechanism it is assumed to be associated
with the radiative-induced direct interband transitions be-
cause the Auger processes are forbidden due to the symmetry
of electron-hole states.14 Possible contribution of other
generation-recombination mechanisms �e.g., disorder in-
duced transitions caused by acoustic phonons or carrier-
carrier scattering� require an additional investigation. At last,
we considered the interaction of carriers with equilibrium
thermostats formed by acoustic phonons and radiation �com-
pare with Ref. 19�. The problem of heat removal is beyond

σ
σ

σ
σ

FIG. 6. �Color online� The same as in Fig. 5 for lc=20 nm.

FIG. 7. �Color online� Current-voltage characteristics for
lc=10 nm at different temperatures: �a� T=4.2 K, �b� 20 K, �c� 77
K, �d� 150 K, and �e� 300 K. The solid and the dashed curves are
calculated from Eqs. �14� and �19�, and Eqs. �15�–�19�, respectively.

FIG. 8. �Color online� The same as in Fig. 7 for lc=20 nm.
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of the scope of this paper. We assumed that the heat removal
is sufficiently effective.7 This problem becomes insignificant
in the case of sufficiently short electric pulses when the ther-
mostat can be definitely not overheated. The limitations im-
posed above are because of the lack of data on graphene.
Nevertheless, the qualitative pattern of the phenomena stud-
ied should not be essentially modified if the mechanisms of
relaxation are treated in more details.

The rest of assumptions made above are standard. To de-
scribe the momentum relaxation we take into account only
the statical disorder scattering using the phenomenological
model of Ref. 11 �which is in good agreement with the ex-
perimental data; the microscopic mechanisms of scattering
are still unclear20�, whereas a small contribution of acoustic
phonons is disregarded. The utilization of the quasielastic
approximation for describing of the energy relaxation is jus-
tified by condition vW�s. The latter ensures the small energy
transfer accompanied the scattering process. As the energy of
optical phonons is large, their contribution can be neglected
even at relatively strong electric fields. An anisotropy of both
electron and phonon spectra is also insignificant in the carrier
energy ranges under consideration. Since the carrier interac-
tion with thermal radiation can be described by taking into
account only of the direct interband transitions �the Drude
absorption is small�, the approximations used accurately de-
scribe the heating mechanism in graphene and lead to correct
quantitative description of the electric field dependences of
the carrier concentration and the current-voltage characteris-
tics.

In conclusion, the operation of different graphene-based
devices, for example, field-effect transistors, as well as the
effectiveness of graphene interconnections, can be substan-
tially limited by the carries heating considered above. Apart
from this, studies of hot carrier effects can provide valuable
information on electron-phonon �hole-phonon� coupling and
on the mechanisms of recombination. This makes possible
verification of the relaxation mechanisms. Therefore, we be-
lieve that the obtained results will stimulate further experi-
mental and theoretical study �as well as numerical modeling�
of hot carriers in graphene.

APPENDIX: KINETIC EQUATION

Below we evaluate the system of quasiclassical kinetic
equations governing the nonequilibrium carrier distributions
in graphene placed in a strong electric field E. Such a con-
sideration is analogous to the approach used for the bulk
narrow-gap semiconductors, see Ref. 21 and the recent
papers,10 where a similar approach was developed for the
case of graphene. But the case of the bipolar electron-hole
plasma was not analyzed in these papers.

We start from the single-particle density matrix which is
governed by the quantum kinetic equation15

i

�
�ĥW − eE · x, �̂
 = Ĵcoll. �A1�

The collision integral Ĵcoll represents the scattering mecha-

nisms �considered in the main text� and ĥW is the 2�2 Weyl-

Wallace Hamiltonian,22 which describes the states near the
band cross point. Here we use the linear dispersion laws
�lp= lvWp, with l corresponding to the conduction �l= +1� or
the valence �l=−1� bands. The eigenvectors �lp� are deter-
mined from the eigenstate problem as follows:

ĥW�lp� = �lp�lp�, ĥW = vW��̂ · p� ,

�+ 1p� =
1
�2
� 1

ei� �, �− 1p� =
1
�2
�− e−i�

1
� , �A2�

where � is the p-plane polar angle. The function describing
the distribution over lp states Flp= 
lp��̂�lp� and the nondi-

agonal part of density matrix F̃p= 
1p��̂�−1p�= 
−1p��̂�1p��

are obtained from the system of kinetic equations

eE ·
�Flp

�p
+ l

e

�
E · �F̃pX−l,l�p� − Xl,−l�p�F̃p

�� = 
lp�Jc��̂��lp� ,

�A3�

i

�
2vWpF̃p + eE ·

�F̃p

�p
+

e

�
E · X1,−1�p� � �F1p − F−1p�

+
e

�
E · �X−1,−1�p� − X1,1�p��F̃p = 
+ 1p�Jc��̂��− 1p� .

�A4�

Here the interband matrix element of coordinate, Xl,l��p�
= 
lp�x̂�l�p�, is calculated on wave functions of momentum
representation �A2� and has the value of the order of � / p̄,
where p̄ is the characteristic momentum of the hot carries.

In order to show the smallness of nondiagonal compo-
nents of the distribution function, the estimation

lp�Jc��̂��lp��Flp /�m is also used, where �m is the character-
istic time of the momentum relaxation �the smallest charac-
teristic time of the problem�. For typical conditions of the
applicability of quasiclassical description13

2vWp̄ �
�

�c
, eE�c � p̄ �A5�

from Eq. �A4� we have estimation F̃p /Flp�� / �2vWp̄�c�.
Further, neglecting by small nondiagonal contributions we

arrive to the usual system of kinetic equations

eE ·
�Flp

�p
= �

j

Jj�F�lp� , �A6�

which describes the distribution of hot carriers over the
bands l= �1 and the 2D momentum p. The scattering inte-
grals, Jj�F � lp�, are obtained in Refs. 5 and 10. Here l corre-
sponds to conduction �l= +1� or valence �l=−1� band, p is
the 2D momentum, and Jj�F � lp� is the collision integral for
the jth scattering mechanism �j=D, LA, R, and C, see dis-
cussion after Eq. �1�
. It is convenient to make transition to
the electron-hole representation introducing the electron �e�
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and hole �h� distribution functions, fep and fep, according to
the replacements23

F+1,p → fep, 1 − F−1,pt → fhp �A7�

and to rewrite the collision integrals in Eq. �A6� through
fe,hp.

Finally, using substitution �A7� and the velocity operator

v̂= i�ĥW ,x
 /�=vW�̂, we obtain the velocity of lp state:

lp�v̂�lp�= lvWp / p�vlp. Taking into account fourfold degen-
eracy of states in graphene due to spin and valley degrees of
freedom, one obtains the current density

I =
4e

L2 �
lp

vlpFlp =
4evW

L2 �
p

p

p
�fep + fhp� . �A8�

In addition, in the intrinsic material the electron density is
equal to the hole one �the neutrality condition� as follows:

4

L2�
p

�fep − fhp� = 0. �A9�

Thus, the symmetric scattering for the c and the v bands Eqs.
�A6�, �A8�, and �A9� preserve their form when fep is re-
placed by fhp. As a result, the electron and hole distributions
in the intrinsic material are identical, fep= fhp� fp so that the
kinetic equation and the current density take the forms of
Eqs. �1� and �3�, respectively.
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